Reference: Zhang X, et al. (2025) Preparation and analysis of quinoa active protein (QAP) and its mechanism of inhibiting Candida albicans from a transcriptome perspective. PeerJ 13:e18961

Reference Help

Abstract


The globe cultivation and industrial production of quinoa have been steadily increasing. Nevertheless, the full potential of quinoa's nutritional and economic benefits remains underexploited. This study investigates the isolation and purification of quinoa active protein (QAP) through the precipitation method using ammonium sulfate from a phosphate extraction solution. The purification process involved gel filtration chromatography with Sephadex G-75 and Sephadex G-50 columns to obtain QAP fractions exhibiting inhibitory effects against Candida albicans (C. albicans). A comprehensive series of experiments was undertaken to examine the antifungal properties of these fractions. Proteomic analysis was employed to elucidate the composition of the active proteins. Furthermore, the activities of succinate dehydrogenase, Ca2+-Mg2+-ATPase, and catalase in C. albicans following treatment with QAP were quantified using an enzyme-linked immunosorbent assay. The effects of QAP on the cell morphology of C. albicans cultured on Spider agar medium was further investigated using scanning electron microscopy (SEM). Furthermore, RNA-seq analysis was conducted to investigate the alterations in gene expression in C. albicans cells subjected to QAP treatment. To elucidate the functional significance of these expression changes, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed. Quantitative real-time polymerase chain reaction was subsequently employed to validate the observed changes in gene expression. Our findings demonstrate that QAP exhibits inhibitory effects against C. albicans, with a minimum inhibitory concentration of 182 µg/mL. Through proteomic analysis, a definitive set of 18 active quinoa proteins was identified. At the molecular level, genes associated with hyphal development, cell wall and membrane integrity, cellular respiration, and energy metabolism were found to be enriched. Protein-protein interaction (PPI) analysis revealed that these QAP inhibit the growth of C. albicans hyphae, compromise cell wall and membrane integrity, and suppress oxidative phosphorylation. These disruptions collectively impair normal cellular metabolic activities, thereby exerting an inhibitory effect on C. albicans.

Reference Type
Journal Article
Authors
Zhang X, Zheng C, Ge W, Li X, Wang X, Sun Y, Wu X
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference