Reference: Li D, et al. (2025) LC-MS/MS-based metabolomics and multivariate statistical analysis reveal the mechanism of yeast extracellular proteases on myofibrillar protein degradation, metabolite development and sensory characteristics improvement. Food Microbiol 128:104715

Reference Help

Abstract


Yeast extracellular proteases play a key role in developing the taste of dry-cured ham, whereas the mechanism of yeast proteases on taste formation of dry-cured ham is not fully studied. The proteases characteristics of yeast isolated form Jinhua ham, hydrolysis capacities for myofibrillar proteins (MP), free amino acid contents, metabolite compositions, taste parameters and the relationship between metabolites and taste parameters were investigated to reveal the mechanism of Rhodotorula mucilaginosa AUMC 9298 (RM) and Candida parapsilosis d70a (CP) proteases on MP hydrolysis and taste development of dry-cured ham. The proteases of RM and CP showed high hydrolysis activities at the conditions of pH 5.0-8.0 and 30-50 °C. The proteases of RM showed higher capability to degrade myosin compared with CP proteases and Pichia kudriavzevii XS-5 (PK) proteases. The total free amino acid contents increased from 18.44 mg/100 mL in PK to 33.91 mg/100 mL in RM and 25.28 mg/100 mL in CP after 4 h hydrolysis of MP. Thirty-two metabolites were identified by LC-MS/MS, and peptides and amino acid derivatives were the key components of MP hydrolysates. The scores of umami, richness and aftertaste showed the largest values in RM among these groups. PLS-DA and correlation demonstrated that aspartic acid, N-Methyl-aspartic acid, Glu-Glu, γ-Glu-Cys, glutamic acid, γ-Glu-Glu and γ-Glu-Gln were positive correlation with the improvement of umami, richness and aftertaste.

Reference Type
Journal Article
Authors
Li D, Liang Y, Xia Q, Pan D, Du L, He J, Sun Y, Wang Y, Wang W, Cao J, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference