Qin N, et al. (2024) Increased CO2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat Commun 15(1):1591 PMID:38383540
Tan Y, et al. (2024) Temperature regulates negative supercoils to modulate meiotic crossovers and chromosome organization. Sci China Life Sci 67(11):2426-2443 PMID:39048717
Qin N, et al. (2023) Flux regulation through glycolysis and respiration is balanced by inositol pyrophosphates in yeast. Cell 186(4):748-763.e15 PMID:36758548
Zhou Y, et al. (2023) De novo biosynthesis of 2-hydroxyterephthalic acid, the monomer for high-performance hydroxyl modified PBO fiber, by enzymatic Kolbe-Schmitt reaction with CO2 fixation. Biotechnol Biofuels Bioprod 16(1):179 PMID:37986026
Guo W, et al. (2022) Erratum for "Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae" (Vol. 117, Issue 8, pp. 2410-2419). Biotechnol Bioeng 119(7):2010 PMID:35426949
Xie R, et al. (2022) Improved energy efficiency in microbial fuel cells by bioethanol and electricity co-generation. Biotechnol Biofuels Bioprod 15(1):84 PMID:35978352
Yang X, et al. (2022) The ubiquitin-proteasome system regulates meiotic chromosome organization. Proc Natl Acad Sci U S A 119(17):e2106902119 PMID:35439061
Wang Y, et al. (2021) ESA1 regulates meiotic chromosome axis and crossover frequency via acetylating histone H4. Nucleic Acids Res 49(16):9353-9373 PMID:34417612
Guo W, et al. (2020) Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae. Biotechnol Bioeng 117(8):2410-2419 PMID:32369184
Chen Y and Tan T (2018) Enhanced S-Adenosylmethionine Production by Increasing ATP Levels in Baker's Yeast ( Saccharomyces cerevisiae). J Agric Food Chem 66(20):5200-5209 PMID:29722539
Sinzel M, et al. (2016) Mcp3 is a novel mitochondrial outer membrane protein that follows a unique IMP-dependent biogenesis pathway. EMBO Rep 17(7):965-81 PMID:27226123
Tan T, et al. (2016) Controlling quality and amount of mitochondria by mitophagy: insights into the role of ubiquitination and deubiquitination. Biol Chem 397(7):637-47 PMID:27145142
Ji H, et al. (2012) Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol. Appl Biochem Biotechnol 168(1):21-8 PMID:21590307
Pang E, et al. (2012) Promiscuous domains: facilitating stability of the yeast protein-protein interaction network. Mol Biosyst 8(3):766-71 PMID:22166987
Wang M, et al. (2012) The effect of intracellular amino acids on GSH production by high-cell-density cultivation of Saccharomyces cerevisiae. Appl Biochem Biotechnol 168(1):198-205 PMID:22143994
Wang J, et al. (2009) [Optimization of high-cell-density fermentation process for S-adenosyl-L-methionine production]. Sheng Wu Gong Cheng Xue Bao 25(4):533-6 PMID:19637627
Shang F, et al. (2008) High-cell-density cultivation for co-production of ergosterol and reduced glutathione by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 77(6):1233-40 PMID:18071647
Wang J and Tan T (2008) [Pre-L-methionine feeding strategy for S-adenosyl-L-methionine fermentative production]. Sheng Wu Gong Cheng Xue Bao 24(10):1824-7 PMID:19149199
Yu J, et al. (2007) An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J Biotechnol 129(3):415-20 PMID:17383041
Shang F, et al. (2006) Effect of nitrogen limitation on the ergosterol production by fed-batch culture of Saccharomyces cerevisiae. J Biotechnol 122(3):285-92 PMID:16488499
Shang F, et al. (2006) High-cell-density fermentation for ergosterol production by Saccharomyces cerevisiae. J Biosci Bioeng 101(1):38-41 PMID:16503289