Reference: Tan T, et al. (2016) Controlling quality and amount of mitochondria by mitophagy: insights into the role of ubiquitination and deubiquitination. Biol Chem 397(7):637-47

Reference Help

Abstract


Mitophagy is a selective autophagy pathway conserved in eukaryotes and plays an essential role in mitochondrial quality and quantity control. Mitochondrial fission and fusion cycles maintain a certain amount of healthy mitochondria and allow the isolation of damaged mitochondria for their elimination by mitophagy. Mitophagy can be classified into receptor-dependent and ubiquitin-dependent pathways. The mitochondrial outer membrane protein Atg32 is identified as the only known receptor for mitophagy in baker's yeast, whereas mitochondrial proteins FUNDC1, NIX/BNIP3L, BNIP3 and Bcl2L13 are recognized as mitophagy receptors in mammalian cells. Earlier studies showed that ubiquitination and deubiquitination occurs in yeast, yet there is no direct evidence for an ubiquitin-dependent mitophagy pathway in this organism. In contrast, a ubiquitin-/PINK1-/Parkin-dependent mitophagy pathway was unraveled and was extensively characterized in mammals in recent years. Recently, a quantitative method termed synthetic quantitative array (SQA) technology was developed to identify modulators of mitophagy in baker's yeast on a genome-wide level. The Ubp3-Bre5 deubiquitination complex was found as a negative regulator of mitophagy while promoting other autophagic pathways. Here we discuss how ubiquitination and deubiquitination regulates mitophagy and other selective forms of autophagy and what argues for using baker's yeast as a model to study the ubiquitin-dependent mitophagy pathway.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Tan T, Zimmermann M, Reichert AS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference