April 17, 2017
Global yeast genetic interaction profile similarity network. Image from TheCellMap.org.
With the construction of a global genetic interaction network in S. cerevisiae, it’s not hard to see why yeast genetic interactions remain a treasure trove for biological discovery. When combined with tools for visualization and analysis, these data can be used to draw powerful functional maps of the cell and infer potential functions for uncharacterized genes.
In a recent paper published in G3: Genes|Genomes|Genetics, Usaj et al. describe a web-based resource for exploring the global yeast genetic interaction network: TheCellMap.org. TheCellMap.org is an online database and visualization tool for quantitative yeast genetic interaction data. It provides an interactive version of the global yeast genetic interaction similarity network described by Costanzo et al., enabling users to scroll through and zoom in on different clusters of functionally related genes within the network. Users can search for specific genes or alleles, extract and re-organize sub-networks for genes of interest, functionally annotate genetic interactions, and more. Further, if more details about a gene are needed, users can even double-click on the gene to be taken to its respective locus summary page at SGD!
For more information about this resource, see http://TheCellMap.org/about/ or access the publication at https://doi.org/10.1534/g3.117.040220.
Categories: Announcements
April 04, 2017
Sometimes in life you need to take risks to survive and prosper. Maybe you need to take a leap of faith like Bruce Wayne does to escape that pit in The Dark Knight Rises. Or you need to try a risky business strategy to put your company out in front.
While these are critical things to do at the time, chronic risk-taking is not usually a good idea. Even Bruce Wayne retires to Florence at the end of The Dark Knight Rises, his risky life choices done now that he has saved his beloved Gotham City. He can now settle down with Selina Kyle (Catwoman) and live happily (and safely) ever after.
Something similar can happen in the budding yeast, Saccharomyces cerevisiae. In the right environment, certain yeasts can build up mutations like mad, hoping to hit on one that lets them make it out of that pit.
But then, over time, yeasts with the successful mutation lose that frenetic mutation rate—they take fewer risks with their DNA. One way they can do this is by ending up with a mutation that suppresses the high mutation rate. This is like Bruce Wayne retiring to a nice villa on the Arno.
Another way they can reestablish their old mutation rate is to mate with a nonmutator, a yeast strain that does not risk its DNA with a high mutation rate. Now, the next generations have the beneficial mutation and a lowered mutation rate as well. It is as if Bruce Wayne settled down with an accountant instead of Catwoman and had risk-averse children to carry on the Wayne name.
Bui and coworkers investigate this phenomenon in yeast in a new study out in GENETICS. They show that natural isolates exist that can sporulate into one of these mutator strains. And that at least one strain predicted to have a high mutation rate has a number of suppressor mutations that tamp down that higher rate.
Previous work had shown that a high mutation rate can happen with mutations in two genes in the mismatch repair (MMR) pathway, MLH1 and PMS1. This was discovered when researchers saw that some of the haploid strains from a mating of two laboratory strains, S288C and SK1, showed this mutator phenotype. A closer look revealed that S288C has a mutation in MLH1, and SK1 has a mutation in PMS1.
Bui and coworkers show that these mutator haploid strains outcompete other strains in high salt media. The strain hits upon mutations that allowed for better survival in high salt faster than its slower mutating brethren. But this advantage does not last.
After 120 generations these mutator strains start to lag behind strains with more typical mutation rates. Their DNA becomes as beat up as Bruce Wayne’s body by the third movie.
The researchers next looked at the MLH1 and PMS1 genes of 1,010 natural isolates of S. cerevisiae to see if there were any that might be able to sporulate into a mutator strain. Or that were already mutator strains themselves.
Since the mutations that lead to the mutator phenotype are recessive, strains that are heterozygotes for mutations in both genes should be able to form haploid spores with the higher mutation rate. They found 18 that fit the bill.
They also found one strain, YJM523, that was homozygous for both mutations and so would be predicted to have a high mutation rate. They further investigated this strain.
The first thing they did was to test the YJM523 mutant genes in an S288C background. They found that these two mutant genes did indeed give S288C a mutator phenotype. In fact, it had a higher mutation rate than the original genes from S288C and SK1 did, suggesting there were other mutations in one or both YJM523 genes that further increased the mutation rate.
These researchers next wanted to determine if YJM523 had a higher mutation rate or not, but needed to first develop a new assay that could be used in natural isolates. They came up with a reporter system that is not dependent on the typical markers used in yeast experiments, but instead relies on two antibiotic markers.
The reporter uses the NatMX antibiotic resistance marker for selection and the KanMX marker to identify revertant mutants. By scoring the number of colonies resistant to both antibiotics, they could determine the mutation rate.
When the researchers did this experiment, they found that YJM523 did not have a particularly high mutation rate. Sporulation experiments showed that this was most likely due to multiple suppressor mutations.
So out in the wild, the potential for mutator strains exists. And a close look at the genome of YJM523 showed that if it did have a mutator phenotype, it was for a short time. This yeast at least quickly lost its high mutation rate (assuming it ever had one).
This study helps to explain how yeast can obtain that mutator phenotype that researchers have seen before. And how yeast can escape that mutation pit to get back to the safety of a reasonable DNA repair pathway. To quote the prisoners in The Dark Knight, “Deshi Basara”, or ‘rise up’ yeast!
by Barry Starr, Ph.D., Director of Outreach Activities, Stanford Genetics
Categories: Research Spotlight
Tags: adaptation, DNA mismatch repair, experimental evolution, genetic incompatibility, mutator phenotype, natural yeast isolates
March 23, 2017
Just like baking bread, “oven” size matters when trying to increase yields of fatty acids in yeast.
In a classic skit from I Love Lucy, Lucy bakes a loaf of bread that is so big it ends up coming out of the oven, pushing her against the far wall. Definitely one of the funniest moments from early TV.
In a new study in Nature Communications, Gajewski and coworkers show that the yeast enzyme fatty acid synthase (FAS) complex, is a bit less comical when it comes to the fatty acid chains it makes. When these authors engineer the enzyme complex to “shrink” the oven, the “bread” it makes becomes smaller. A more constrained active site that holds onto its growing fatty acids less tightly makes shorter-chained fatty acids.
This is an important finding because these shorter-chained fatty acids are so useful as precursors for products like biofuels. Engineered yeast like these may, among other things, one day help us get to a carbon neutral future.
Gajewski and coworkers were able to pull this off because the 3-D structure of this enzyme complex is so well understood. They engineered changes that would be predicted to restrict the growth of the fatty acid chain.
For example, a key player in the elongation step happens in the condensation domain (KD) of the complex. They focused initially on the amino acid methionine at position 1251 (M1251).
This amino acid sticks out into the active site and needs to rotate out of the way when the fatty acid chain elongates. The authors reasoned that if they made it bigger and harder to rotate, the enzyme complex wouldn’t be as good at elongating the fatty acid chains it makes. The loaf would stop growing when it ran out of room.
They were right. When they mutated a nearby glycine to serine (G1250S), the yeast now made 15.3 mg/liter of fatty acids with 6 carbons (C6 fatty acids), a 9-fold increase over wild type. FAS usually makes C12-C18 fatty acids.
Tomorrow’s oil wells? By (Image: Maitreya Dunham) [CC BY 2.5], via Wikimedia Commons
They got even better results when they bulked up position 1251 by changing the methionine to a tryptophan (M1251W). Now the yeast made 19.1 mg/liter of C6 fatty acids, a 12-fold increase, and 32.7 mg/liter of C8 fatty acids, a 56-fold increase. They made a third mutation, F1279Y, that ended up affecting growth adversely when combined with G1250S.
This was good, but not good enough. To be commercially viable, they needed higher yields. They next wanted to make mutations that would cause the enzyme complex to hold onto the fatty acids less tightly, like having the baker remove the bread from the oven before it got too big.
For this, they focused on the malonyl/palmitoyl transferase (MPT) domain. They reasoned that by making the complex less able to bind malonyl, it would also bind the growing fatty acid chain less well too. Again, they were right.
When they replaced an arginine with a lysine at position 1834 (R1834K), the yeast made 100 mg/liter of mostly C8 fatty acids, a 23-fold increase. They made an additional mutation, I306A, that had little effect on its own.
Things got really interesting when they looked at different combinations of these mutations. When they mixed and matched them, they pushed yields up even more. And different combinations made different proportions of various sized fatty acids. Scientists can pick the mutant that gives them their desired product.
The best yield was with yeast carrying the triple mutant, I306A-R1834K-G1250S. These yeast managed to make 118 mg/liter of shorter-chained fatty acids.
Gajewski and coworkers boosted this mutant’s yield even more by changing out the promoter. Doing so resulted in the yeast making 464.4 mg/liter of the enzyme.
We now have a strain of yeast that can make a lot of the precursors needed for making biofuels and other chemicals. And scientists can pick the mutant that gives them more of their desired precursor. If they want more C6, they should use one mutant and if they want more C8 they should use a different one.
#APOYG is helping to create designer molecules that could, among other things, help steer us toward a more carbon neutral future.
by Barry Starr, Ph.D., Director of Outreach Activities, Stanford Genetics
Categories: Research Spotlight
Tags: biofuels, fatty acid synthesis, precursor
March 17, 2017
For almost 50 years, the legendary Yeast Genetics & Genomics course has been taught each summer at Cold Spring Harbor Laboratory.
For almost 50 years, the legendary Yeast Genetics & Genomics course has been taught each summer at Cold Spring Harbor Laboratory. (OK, the name didn’t include “Genomics” in the beginning…). The list of people who have taken the course reads like a Who’s Who of yeast research, including Nobel laureates and many of today’s leading scientists.
The application deadline is April 15th, so don’t miss your chance! Find all the details and application form here.
This year’s instructors – Grant Brown, Maitreya Dunham, and Elçin Ünal – have designed a course (July 25 – August 14) that provides a comprehensive education in all things yeast, from classical genetics through up-to-the-minute genomics. Students will perform and interpret experiments, learning about things like:
Techniques have been summarized in a completely updated course manual, which was recently published by CSHL Press.
There’s fierce competition between students at CSHL courses in the Plate Race, a relay in which teams carry stacks of 40 Petri dishes (used, of course).
Scientists who aren’t part of large, well-known yeast labs are especially encouraged to apply – for example, professors and instructors who want to incorporate yeast into their undergraduate genetics classrooms; scientists who want to transition from mathematical, computational, or engineering disciplines into bench science; and researchers from small labs or institutions where it would otherwise be difficult to learn the fundamentals of yeast genetics and genomics. Significant stipends (in the 30-50% range of total fees) are available to individuals expressing a need for financial support and who are selected into the course.
Besides its scientific content, the fun and camaraderie at the course is also legendary. In between all the hard work there are late-night chats at the bar and swimming at the beach. There’s a fierce competition between students at the various CSHL courses in the Plate Race, which is a relay in which teams have to carry stacks of 40 Petri dishes (used, of course). There’s also a sailboat trip, a microscopy contest, and a mysterious “Dr. Evil” lab!
The Yeast Genetics & Genomics Course is loads of fun – don’t miss out!
Categories: Announcements
March 13, 2017
Like this marathon runner, some older yeast are able to win out over their younger counterparts. In the right environment, that is! Image from Wikimedia Commons.
A square slab can make an excellent door stop. Over time, though, the corners can get chipped, making the slab a bit rounded. This new bit of rock makes a less useful doorstop, but a much better wheel! The chipping and aging of the original stone has made it worse in some situations, but better in others.
A new study by Frenk and coworkers in Aging Cell shows that something similar can happen in yeast. Young yeast are much better at utilizing glucose, but older yeast have them beat with galactose (as well as with raffinose and acetate).
One way to think about this is that age turns yeast from a glucose specialist into a sugar generalist. Aging chips away at a yeast cell’s ability to use glucose, but this loss results in a gain in its ability to use galactose.
So at least in the right environment (i.e., when there’s lots of galactose around), with our old friend Saccharomyces cerevisiae, there can be advantages to getting older.
What makes this particularly fascinating is that at least in yeast, this suggests that there may be a positive selection for aging because of the advantage it can give in certain environments. Those yeast who are ageless would compete less well compared to their aging counterparts when their glucose was taken away. The aging process wins out over immortality!
Frenk and coworkers used a relatively simple experimental set up. Take young cells and old cells, mix them together, and see which outcompetes the other using various sugars.
They used yeast that had been aged for 6, 24, and 48 hours in glucose. This is a nice range as 6-hour “old” yeast are fully viable, 24-hour “old” yeast are starting to suffer a bit in the reproductive viability department, and the 48-hour “old” yeast have passed the median lifetime of a yeast cell. Young adult, middle aged, and elderly yeast.
In the first experiment, they compared these yeast to log-phase yeast which the authors refer to as young (vs. the other three which are referred to as aged).
While the 6 hour yeast could hold its own against the young yeast in glucose, the 24-hour and 48-hour yeast grew much more slowly. This is what you would expect, the younger yeast growing faster than the older yeast. The young guns outdoing the older generations.
The situation was different in galactose. Here, the elderly, 48-hour yeast, ran circles around the young yeast. They blew them out of the water.
And it appears to be an age thing. When they compared 6- and 48-hour yeast that were aged in galactose instead of glucose, the more aged yeast still won. So, it wasn’t the shift in environment that caused the difference, it was in the older yeast cells all along.
The change is also not permanent. The offspring of the older yeast weren’t any better at growing in galactose than the younger yeast were. Only the cells that had lived a longer life could use galactose so well.
The cylindrical stone may not be as good a doorstop, but it makes a much better wheel! Image from flickr.
A concern here is that yeast as old as 48 hours are pretty rare in the wild. But when they changed assays and looked at colony size as opposed to competition, they saw that even 18-hour yeast had an advantage over the young whippersnappers.
This was such a surprising result that they also looked at cell cycle times of individual aged cells and their daughters. The older mother cells cycled faster in galactose than their daughters. And the opposite was true in glucose.
So it really looks like there are advantages to growing older. Things break down a bit, but that breakdown uncovers new talents that had previously lain dormant.
If you’re a yeast, growing old is not a one-way decline into dotage. You gain new abilities that, under the right conditions, let you outcompete your children! The older cells are selected for in the right environments. #APOYG shows us something good about growing older.
by Barry Starr, Ph.D., Director of Outreach Activities, Stanford Genetics
Categories: Research Spotlight
Tags: aging, evolution of aging, generalist, specialist
March 02, 2017
Unlike a fever, starving some cancers is actually a good treatment. And our friend yeast may be able to help. Image from http://maxpixel.freegreatpicture.com.
You may have heard the old wives’ tale of feed a cold, starve a fever. Turns out that this isn’t particularly good advice (although some studies do suggest that with a fever, you shouldn’t force-feed yourself). It also turns out to have probably originated in the 19th century and not from Chaucer in the 14th as many websites claim.
But while starving a fever is probably never a good idea, starving a cancer can be. Not by following the medical myth that since cancers use a lot of sugar, you can starve them by cutting down on sugar in your diet. Instead you can starve some cancers by denying them the amino acid asparagine (Asn).
On their way to becoming cancerous, acute lymphoblastic leukemia (ALL) cells lose their ability to make Asn. This means that unlike the cells around it, they need to pull Asn from the blood to make their proteins and to survive.
Doctors exploit this weakness by injecting L-asparaginase amidohydralase (L-ASNase) into patients which starves the cancer cell by depleting Asn levels in the blood. The cells around the cancer cells are fine because they can still make Asn.
Right now doctors use L-ASNase from two different bacterial sources: Escherichia coli and Erwinia chrysanthemi. But if a recent study by Costa and coworkers in Scientific Reports holds up, they might want to think about switching to using the Saccharomyces cerevisiae L-ASNase encoded by the ASP1 gene.
An older study had suggested that the yeast enzyme might be too weak to be useful. This new study finds that this is not the case.
The difference between the older study and this one was the purification protocol. The older study purified the native enzyme through multiple chromatography steps while this study used a single affinity chromatography step. The purified yeast and E. coli versions have comparable activity in this study.
They are also comparable in terms of being able to work with very low concentrations of Asn. This is important as Asn levels are very low in the blood.
What makes the yeast enzyme potentially better is that it is much worse at hydrolyzing a second amino acid, glutamine, than are the bacterial versions. This higher specificity for Asn is important because one of the major side effects of the current treatment is neurotoxicity caused by decreased levels of glutamine in the blood. Since the yeast version hydrolyzes glutamine at a lower rate, they predict patients may not suffer as badly from this side effect with the yeast version.
Of course this is all for naught if the yeast enzyme can’t kill cancer cells! Or if it kills cells indiscriminately.
The S. cerevisiae version was nearly as good as the E.coli version in tissue culture. After 72 hours of incubation, both versions had little effect on normal cells (HUVEC), and both were cytotoxic to the L-ASNase-sensitive cell line MOLT-4 with the E. coli version killing 95% of MOLT-4 cells and the yeast version killing 85% of them.
Move over dog, yeast is humanity’s best friend now. Image from pixabay.
Taken together these results suggest that the S. cerevisiae version may be an alternative to the bacterial versions. It may be able to kill cancer cells with fewer side effects.
But the yeast version is not the only alternative in town. Another group is engineering the E. coli version to lessen its propensity for hydrolyzing glutamine. Either way it looks like certain leukemia patients may be getting an effective cancer treatment with fewer side effects.
Beer, wine, bread, chocolate, and now maybe a treatment for a nasty form of leukemia. Yeast may be humanity’s best friend. #APOYG!
by Barry Starr, Ph.D., Director of Outreach Activities, Stanford Genetics
Categories: Research Spotlight, Yeast and Human Disease
Tags: Acute lymphocytic leukemia, cancer, Proteins, Recombinant protein therapy
February 15, 2017
You need an expert (not this guy!) for your plumbing problem. Just like you need yeast, and not some other organism, to study prions Image from flickr.
If you have a legal problem, you get a lawyer. A medical problem, a doctor. A leaky faucet, a plumber.
And if you are trying to find and figure out if a protein is a prion, you turn to the model organism where it is best understood. Yes, that is our old friend, the yeast Saccharomyces cerevisiae.
Prions became famous in the 1980’s when mad cow disease started to pop up in Britain. These are fascinating proteins that can cause an inheritable disease without affecting a cell’s DNA.
What happens is that prions can undergo a spontaneous conformational change. Now of course, this isn’t all that special. Lots of proteins can exist in different conformations.
But what makes a prion special is that the spontaneous change sets off a chain reaction where pretty much every copy of that prion protein is converted to that second conformation. And every translated prion protein thereafter both in the cell and any cells derived from that cell have that conformation too. So the new conformation along with the new traits it confers is passed on stably.
In mad cow disease, this spontaneous change causes neurological problems eventually resulting in death. But not every prion is so dangerous. Sometimes, as is the case in yeast, they can give new properties that allow survival in a new environment. Now these yeast have a new advantage in the absence of changed DNA.
Up until now prions have pretty much been confined to eukaryotes. That looks to change if a new study in Science by Yuan and Hochschild holds up.
They found that some bacteria have proteins that can and do behave as prions in a laboratory setting. The next step is to determine if they ever do so in the wild. If they do, then this would tell us that functioning prions may have evolved before the Bacteria/Eukaryota split and so be older than scientists previously thought.
The first step in finding a bacterial prion involved combing through a few bacterial genomes. Did I say a few? I meant something like 60,000 of them!
Of course you need the right tool for your search. This is where yeast’s incredibly well characterized set of prions comes in handy.
Yuan and Hochschild used an algorithm trained on known yeast prions to search through the bacterial genomes for proteins that have domains that would be predicted to be able to enter into a prion conformation. Among the proteins they found was the Rho protein in Clostridium botulinum E3 strain Alaska E43. Like the authors, I’ll call this protein Cb-Rho from here on out.
As you might remember, Rho is that famous transcription termination protein found in many different bacteria including E. coli. The E. coli version, however, does not look particularly like a prion nor did the authors find that it acts like one either.
A hallmark of prions is that one of the conformations involves their ability to form amyloid aggregates. These authors used a bacterial assay to show that this happened with Cb-Rho.
They next checked whether the prion portion of the protein behaved as a prion in a yeast cell. They substituted the prion domain from Cb-Rho with that of the one from Sup35p, a yeast prion. This chimeric protein behaved similarly to wild type Sup35p.
If you have a broken pipe, you find a plumber. But if you want to find and characterize a prion, you turn to yeast. Image from flickr.
They next tested their protein in E. coli. Often the prion conformation of the prion protein results in decreased activity of the protein. This is true in the Sup35p case, for example.
Sup35 acts as a translation release factor – it is an important factor in stopping translation at a stop codon. It is less active in its prion form meaning that there is now more read through of stop codons.
Rho is a transcription termination factor and so it would make sense that the prion conformation of Rho would result in lower levels of transcription termination. This is just what the authors found when they tested Cb-Rho in E. coli.
They used a reporter in which a transcription termination site was placed upstream of the lacZ gene. The idea is that if transcription termination is compromised, more lacZ will get made making the colonies a darker blue. And since termination is not 100% efficient, if Rho is doing its job, the colonies will be light blue.
When they plated out E. coli containing an engineered form of Cb-Rho, they got two classes of colonies, light blue and dark blue. And more importantly, this colony color was inheritable. In other words, light blue colonies gave more light blue colonies and dark blue colonies gave more dark blue colonies.
This isn’t to say that the colony color was a permanent state. It wasn’t. A bit under 1% of the colonies would spontaneously revert to the other form, as you’d expect from a prion protein.
So with the invaluable help of yeast, these authors were able to find and validate a protein from bacteria that can act as a prion. If they find a function for this in the wild, then yeast will have helped us better understand the evolution of life on Earth. Again. #APOYG!
by Barry Starr, Ph.D., Director of Outreach Activities, Stanford Genetics
Categories: Research Spotlight
Tags: amyloid, bacterial prion, lacZ, protein aggregate
February 06, 2017
If this swimmer’s snorkel were a glutamic acid and he was in a membrane, he couldn’t stay there for very long. His snorkeling tube would be too short! Image from pixabay.
Snorkeling is a blast. With a small tube stuck out into the air you can explore the wonders of the sea for much longer than you would be able to otherwise.
It is obviously important that the snorkel be long enough to reach out of the water. If it isn’t, you’ll be sucking down a lungful of water in no time.
Something similar can happen with membrane spanning proteins except that in this case, a snorkel is not essential to the protein swimming in the greasy confines of a membrane. Instead, positively charged amino acids like lysine or arginine can be tolerated much more often than you might think because of their structure.
Since membranes are hydrophobic, the amino acids in the part of the protein that span the membrane tend to be hydrophobic as well. Charged amino acids are usually trouble.
A proposed exception is amino acids like arginine and lysine. Their positive charges are each at the end of a long aliphatic chain:
What is thought to happen in that the aliphatic chain of the lysine or arginine snuggles up to the greasy part of the phospholipid and the positive part of these amino acids sticks out of the membrane to the more aqueous environment on the other side. The aliphatic side chain is long enough for the charged group to get out of the hydrophobic part. These amino acids may also work well because they can interact with the net negative charge that some phospholipid head groups have.
This is all very cool but, to date, there is very little in vivo work that supports this idea. Which of course means we need to turn to that workhorse model organism Saccharomyces cerevisiae to get some evidence!
In a new study out in GENETICS, Keskin and coworkers use yeast to provide some in vivo evidence that these positively charged amino acids are well tolerated in the membrane-anchoring domain of the yeast protein Fis1p. While I won’t have the space to go into some of the other fascinating experiments in this study, please read it over to learn more about how proteins are inserted into the mitochondrial outer membrane and the structure of this particular carboxy-terminal anchor.
The authors investigated the 27 amino acid carboxy-terminal anchor of this protein by first individually changing every one of its amino acids into every other amino acid (deep mutational scanning). Well, they didn’t get every possible combination. But 98.9% of them is pretty good!
Next they used a very clever screen to find which of these Fis1p mutants that could not properly insert into the mitochondrial membrane. Basically, they fused transcription activator Gal4p to their mutant library. If a mutant protein cannot insert into the membrane, then it is free to enter the nucleus and activate transcription of either a HIS3 or URA3 reporter.
When they did this they were surprised to see that the positively charged amino acids arginine and lysine were well tolerated in the membrane spanning portion of the protein. As expected, mutants with the negatively charged amino acids aspartic acid or glutamic acid in this region of the protein were not.
Here are these four amino acids:
The key difference here (besides the different charges) is the length of the aliphatic chain, the “snorkel” part of the amino acid. Both of the negatively charged amino acids are too short to be able to stick the charged part of the amino acid out of the membrane layer. They are like a snorkeler trying to snorkel with a tube that’s too short. It won’t work well.
So membrane spanning regions are not as hydrophilic fearing as many scientists and protein prediction programs may think.
It may be that the algorithms used to predict membrane spanning regions of proteins are missing some of them because they are too strict about the presence of charged amino acids like lysine and arginine. Perhaps these programs need to be modified to better allow for the presence of an errant arginine or lysine lurking in a long stretch of hydrophobic amino acids.
Of course we turned to yeast to help us better understand reality so we can come up with better algorithms. We may need to listen to yeast so that the programs can be adjusted to think about more than charge, and focus on the length of the snorkel too. #APOYG!
by Barry Starr, Ph.D., Director of Outreach Activities, Stanford Genetics
Categories: Research Spotlight
Tags: amino acid snorkeling, deep mutational scanning, membrane insertion, mitochondrial division, mitochondrial protein targeting
January 30, 2017
The application deadline for the Fungal Pathogen Genomics workshop to be held May 11-17, 2017 at the Wellcome Genome Campus in Hinxton, Cambridge, UK is fast approaching! Be sure to apply by this Friday, February 3!
This exciting new week-long course aims to provide experimental biologists working on fungal organisms with hands-on experience in genomic-scale data analysis; including genome browsers and comparison tools, data mining using resources such as FungiDB, Ensembl/PhytoPathDB, PomBase, SGD/CGD, MycoCosm, analysis of genome annotation, and next generation sequence analysis and visualization (including RNA sequence analysis and variant calling). An important aim is that the participants should understand the origin of data available in public resources and how to analyse it in conjunction with their own.
The course is taught as a collaborative effort between available fungal informatics resources. The majority of this intensive course will be based on hands-on exercises, supplemented by lectures on genomics and bioinformatics techniques and keynote presentations by distinguished guest speakers.
Don’t miss out – apply now!
Categories: Announcements
January 12, 2017
Improper disposal is bad for the environment and bad for cells. (Image from Wikimedia Commons)
Not too long ago, it was common to see people pouring used motor oil into street drains. Or to have people dumping old prescription drugs down their sinks.
Practices like these were (and are) terrible for the environment. Nature simply can’t deal with a buildup of this stuff (click here for some examples of the effects of pharmaceuticals on the environment).
Which is why it is so great that there are now ways to deal with waste like this. We can recycle it or at the very least dispose of it more carefully.
Turns out that things are similar in a cell. When its trash isn’t disposed of properly and/or recycled, the cell can suffer. And if cells suffer, so can the person made up of those cells.
One case where something like this is probably happening is in patients with the neurological disorder Pontocerebellar hypoplasia type 1B (PCH1B). These people have a mutated EXOSC3, an important gene for a cell’s RNA exosome. Presumably, this terrible disease is the result of certain cells not being able to properly clear some of their old RNAs.
In a new study out in GENETICS, Fasken and coworkers use good old Saccharomyces cerevisiae to begin to figure out what might be going on in the cells of these patients. They found that the most severe mutation seems to make it harder for the mutated protein to be part of the RNA exosome. As a result of being left out, the mutant protein is degraded more quickly leading to a buildup of some RNAs.
These sets of experiments were made a bit more complicated by the fact that human EXOSC3 cannot substitute for RRP40, the equivalent gene in yeast. This meant the researchers needed to focus on only those disease-causing mutations that hit the most highly conserved residues: EXOSC3-G31A, D132A and W238R.
Of these three, only the W238R yeast equivalent, rrp40-195R had much of an effect on the yeast. Fasken and coworkers propose that this is because this is the most deleterious of the three mutants.
Yeast harboring rrp40-195R grew more slowly at both 30 and 37 degrees C with the more pronounced effect at the higher temperature. At 37 degrees C, this mutant had higher levels of certain RNAs but not others. The RNA exosome was compromised for some but not all yeast RNAs.
And it wasn’t compromised everywhere. Although the RNA exosome works both in the nucleus and the cytoplasm, this mutant appeared to only be compromised in the nucleus. (Check the paper out for the cool way they figured this out.)
Next, the authors wanted to work out what this mutation did to the protein and the exosome. They were able to show that the mutant protein was more unstable than the wild type version and, interestingly, was even less stable when co-expressed with the wild type protein. They also showed that the mutant protein associated less well with the exosome complex and, again, this was exacerbated if the wild type protein was also present.
A reasonable model here is that RRP40 is more prone to degradation when it is not part of the RNA exosome. If true, then the mutant version of the protein is less stable because it is less often a part of the RNA exosome. And wild type RRP40 outcompetes the mutant protein making the mutant stay out of the complex for even more time.
OK, so they have done some good work showing why this mutant of RRP40 affects the growth of a yeast cell. But what we really want to know is if these results explain what is going on in the cells of people with the disease.
Fasken and coworkers tackled this by looking at the effect of expressing the equivalent mouse Exosc3 mutant in the presence of wild type endogenous Exosc3 in mouse neuronal cells (the types of cells affected in PCH1B patients). They found that just like in yeast cells, the mutant was less stable in mouse neuronal cells.
So it looks like the recycling machinery for RNA is broken in these cells because of an unstable component and that this leads to a buildup of toxic RNAs. But if the yeast experiments hold up, not all RNAs are affected.
It is more like people still being able to recycle their cans and bottles but not their motor oil. Certain parts of the environment like waterways take a hit but other parts are left relatively unscathed.
This makes sense when you think about PCH1B. Only a few cell types are affected by the mutation in the EXOSC3 gene. In other words, most cells can deal with a slightly wonky RNA exosome.
Yeast has again helped researchers better understand a genetic disease. Awesome indeed. #APOYG
by Barry Starr, Ph.D., Director of Outreach Activities, Stanford Genetics
Categories: Research Spotlight