We report here that the open reading frame YKL248, previously identified during the systematic sequencing of yeast chromosome XI [Purnelle B., Skala, J., Van Dijck, L. & Goffeau, A. (1992) Yeast 8, 977-986] encodes UDP-glucose pyrophosphorylase (UGPase), the enzyme which catalyses the reversible formation of UDP-Glc from glucose 1-phosphate and UTP. Proof for this function come from sequence alignment of the YKL248 product with UGPase of other species, from complementation studies of an Escherichia coli galU mutant deficient in UGPase activity, and from overexpression studies. In particular, the amino acid sequence motifs involved in the binding of glucose 1-phosphate and UDP-Glc are entirely conserved between the yeast, bovine, human and potato tuber UGPases, and multi-copy expression of YKL248 resulted in a 40-fold increase in UGPase activity. This gene was, therefore, renamed UGP1. Gene disruption at the UGP1 locus in a diploid strain, followed by tetrad analysis, showed that UGPase is essential for cell viability. Functional analysis of UGP1 was, therefore, carried out by generating strains in which UGPase could be either overexpressed or depleted. This was done by generating haploid strains carrying either UGP1 on a multicopy vector or the chromosomal deletion of UGP1, and rescued by a vector bearing the wild-type gene under the control of the glucose-repressible galactose-inducible promoter. The effects of overproducing UGPase on the cell metabolism and morphology were carbon-source dependent. On glucose medium, the 40-fold increase of UGPase activity was restricted to a twofold increase in the concentration of glycogen and UDP-Glc, with no significant effect on growth. In contrast, on galactose, the 40-fold increase in UGPase activity was accompanied by several effects, including a threefold reduction of the growth rate, a 3-5-fold increase in the concentrations of UDP-Glc, UDP-Gal and galactose 1-phosphate, a higher sensitivity to calcofluor white and an increase in the degree of protein glycosylation. Depletion of UGPase activity was performed by transferring the mutant strains from galactose to glucose medium. Unexpectedly, growth of these mutants on glucose was as efficient as that of the control, although the mutants contained only 5-10% wild-type UGPase activity, and a growth defect could never been obtained, even after serial transfers of the mutants to a 10% glucose medium. However, the 10-fold reduction of UGPase activity induced a multi-budding pattern, a higher resistance to zymolyase, a slight increase in the calcofluor sensitivity and a decrease in the cell-wall beta-glucan content. All these alterations, induced by manipulating the UGP1 gene, are discussed in the context of the strategic position of UDP-Glc in yeast metabolism.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Source | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
---|