Brewster A, et al. (2025) Inhibition Control by Continuous Extractive Fermentation Enhances De Novo 2-Phenylethanol Production by Yeast. Biotechnol Bioeng 122(2):287-297 PMID:39460388
Koster CC, et al. (2024) Long-read direct RNA sequencing of the mitochondrial transcriptome of Saccharomyces cerevisiae reveals condition-dependent intron abundance. Yeast 41(4):256-278 PMID:37642136
Cachera P, et al. (2023) CRI-SPA: a high-throughput method for systematic genetic editing of yeast libraries. Nucleic Acids Res 51(17):e91 PMID:37572348
Eder M, et al. (2022) Genetic bases for the metabolism of the DMS precursor S-methylmethionine by Saccharomyces cerevisiae. Food Microbiol 106:104041 PMID:35690444
Hassing EJ, et al. (2021) Elimination of aromatic fusel alcohols as by-products of Saccharomyces cerevisiae strains engineered for phenylpropanoid production by 2-oxo-acid decarboxylase replacement. Metab Eng Commun 13:e00183 PMID:34584841
Postma ED, et al. (2021) A supernumerary designer chromosome for modular in vivo pathway assembly in Saccharomyces cerevisiae. Nucleic Acids Res 49(3):1769-1783 PMID:33423048
Randazzo P, et al. (2021) gEL DNA: A Cloning- and Polymerase Chain Reaction-Free Method for CRISPR-Based Multiplexed Genome Editing. CRISPR J 4(6):896-913 PMID:33900846
Boonekamp FJ, et al. (2020) Design and Experimental Evaluation of a Minimal, Innocuous Watermarking Strategy to Distinguish Near-Identical DNA and RNA Sequences. ACS Synth Biol 9(6):1361-1375 PMID:32413257
Perli T, et al. (2020) Adaptive Laboratory Evolution and Reverse Engineering of Single-Vitamin Prototrophies in Saccharomyces cerevisiae. Appl Environ Microbiol 86(12) PMID:32303542
Wronska AK, et al. (2020) Exploiting the Diversity of Saccharomycotina Yeasts To Engineer Biotin-Independent Growth of Saccharomyces cerevisiae. Appl Environ Microbiol 86(12) PMID:32276977
Wijsman M, et al. (2019) A toolkit for rapid CRISPR-SpCas9 assisted construction of hexose-transport-deficient Saccharomyces cerevisiae strains. FEMS Yeast Res 19(1) PMID:30285096
Boonekamp FJ, et al. (2018) The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the Saccharomyces Genus. Front Genet 9:504 PMID:30505317
Mans R, et al. (2018) A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9. FEMS Yeast Res 18(7) PMID:29860374
Cueto-Rojas HF, et al. (2017) Membrane potential independent transport of NH3 in the absence of ammonium permeases in Saccharomyces cerevisiae. BMC Syst Biol 11(1):49 PMID:28412970
Mans R, et al. (2017) A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae. FEMS Yeast Res 17(8) PMID:29145596
Swiat MA, et al. (2017) FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic Acids Res 45(21):12585-12598 PMID:29106617
González-Ramos D, et al. (2016) A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels 9:173 PMID:27525042
Kozak BU, et al. (2016) Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase. FEMS Yeast Res 16(2):fow006 PMID:26818854
Kuijpers NG, et al. (2016) Pathway swapping: Toward modular engineering of essential cellular processes. Proc Natl Acad Sci U S A 113(52):15060-15065 PMID:27956602
Stribny J, et al. (2016) Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development. Microb Cell Fact 15:51 PMID:26971319
van Rossum HM, et al. (2016) Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae. FEMS Yeast Res 16(3) PMID:26895788
van Rossum HM, et al. (2016) Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol. mBio 7(3) PMID:27143389
Mans R, et al. (2015) CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 15(2) PMID:25743786
Milne N, et al. (2015) Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae. Biotechnol Biofuels 8:204 PMID:26628917
Milne N, et al. (2015) Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae. Metab Eng 30:130-140 PMID:26037463
Romagnoli G, et al. (2015) Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose. Yeast 32(1):29-45 PMID:24733517
Solis-Escalante D, et al. (2015) The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Res 15(2) PMID:25673752
Solis-Escalante D, et al. (2015) A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism. Eukaryot Cell 14(8):804-16 PMID:26071034
Zhang J, et al. (2015) Determination of the Cytosolic NADPH/NADP Ratio in Saccharomyces cerevisiae using Shikimate Dehydrogenase as Sensor Reaction. Sci Rep 5:12846 PMID:26243542
van den Broek M, et al. (2015) Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains. Appl Environ Microbiol 81(18):6253-67 PMID:26150454
Kozak BU, et al. (2014) Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. mBio 5(5):e01696-14 PMID:25336454
Kozak BU, et al. (2014) Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng 21:46-59 PMID:24269999
Romagnoli G, et al. (2014) An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme. Mol Microbiol 93(2):369-89 PMID:24912400
Solis-Escalante D, et al. (2014) Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae. FEMS Yeast Res 14(5):741-54 PMID:24833416
Bolat I, et al. (2013) Functional analysis and transcriptional regulation of two orthologs of ARO10, encoding broad-substrate-specificity 2-oxo-acid decarboxylases, in the brewing yeast Saccharomyces pastorianus CBS1483. FEMS Yeast Res 13(6):505-17 PMID:23692465
González-Ramos D, et al. (2013) Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol Biofuels 6(1):48 PMID:23552365
Kazemi Seresht A, et al. (2013) Long-term adaptation of Saccharomyces cerevisiae to the burden of recombinant insulin production. Biotechnol Bioeng 110(10):2749-63 PMID:23568816
Kuijpers NG, et al. (2013) One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae. FEMS Yeast Res 13(8):769-81 PMID:24028550
Kuijpers NG, et al. (2013) A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb Cell Fact 12:47 PMID:23663359
Oud B, et al. (2013) Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 110(45):E4223-31 PMID:24145419
Solis-Escalante D, et al. (2013) amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 13(1):126-39 PMID:23253382
Nijkamp JF, et al. (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11:36 PMID:22448915
Oud B, et al. (2012) Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12(2):183-96 PMID:22152095
Oud B, et al. (2012) An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 11:131 PMID:22978798
Romagnoli G, et al. (2012) Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae. Appl Environ Microbiol 78(21):7538-48 PMID:22904058
Veiga T, et al. (2012) Resolving phenylalanine metabolism sheds light on natural synthesis of penicillin G in Penicillium chrysogenum. Eukaryot Cell 11(2):238-49 PMID:22158714
de Kok S, et al. (2012) In vivo analysis of Saccharomyces cerevisiae plasma membrane ATPase Pma1p isoforms with increased in vitro H+/ATP stoichiometry. Antonie Van Leeuwenhoek 102(2):401-6 PMID:22488179
de Kok S, et al. (2012) Laboratory evolution of new lactate transporter genes in a jen1Δ mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Res 12(3):359-374 PMID:22257278
Basso TO, et al. (2011) Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. Metab Eng 13(6):694-703 PMID:21963484
Livas D, et al. (2011) Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A. BMC Genomics 12:405 PMID:21827659
de Kok S, et al. (2011) Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase. Metab Eng 13(5):518-26 PMID:21684346
van Berlo RJ, et al. (2011) Predicting metabolic fluxes using gene expression differences as constraints. IEEE/ACM Trans Comput Biol Bioinform 8(1):206-16 PMID:21071808
Hazelwood LA, et al. (2010) Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to hop iso-alpha-acids. Appl Environ Microbiol 76(1):318-28 PMID:19915041
Snoek IS, et al. (2010) Involvement of Snf7p and Rim101p in the transcriptional regulation of TIR1 and other anaerobically upregulated genes in Saccharomyces cerevisiae. FEMS Yeast Res 10(4):367-84 PMID:20402793
Verwaal R, et al. (2010) Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response. Yeast 27(12):983-98 PMID:20632327
Daran-Lapujade P, et al. (2009) An atypical PMR2 locus is responsible for hypersensitivity to sodium and lithium cations in the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D. FEMS Yeast Res 9(5):789-92 PMID:19519766
Hazelwood LA, et al. (2009) Identity of the growth-limiting nutrient strongly affects storage carbohydrate accumulation in anaerobic chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 75(21):6876-85 PMID:19734328
Knijnenburg TA, et al. (2009) Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data. BMC Genomics 10:53 PMID:19173729
Baerends RJ, et al. (2008) Engineering and analysis of a Saccharomyces cerevisiae strain that uses formaldehyde as an auxiliary substrate. Appl Environ Microbiol 74(10):3182-8 PMID:18378663
Hazelwood LA, et al. (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74(8):2259-66 PMID:18281432
Luttik MA, et al. (2008) Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng 10(3-4):141-53 PMID:18372204
Boer VM, et al. (2007) Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Res 7(4):604-20 PMID:17419774
Daran-Lapujade P, et al. (2007) The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc Natl Acad Sci U S A 104(40):15753-8 PMID:17898166
De Nicola R, et al. (2007) Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures. Appl Environ Microbiol 73(23):7680-92 PMID:17933919
Tai SL, et al. (2007) Control of the glycolytic flux in Saccharomyces cerevisiae grown at low temperature: a multi-level analysis in anaerobic chemostat cultures. J Biol Chem 282(14):10243-51 PMID:17251183
Tai SL, et al. (2007) Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis. Mol Biol Cell 18(12):5100-12 PMID:17928405
Tai SL, et al. (2007) Correlation between transcript profiles and fitness of deletion mutants in anaerobic chemostat cultures of Saccharomyces cerevisiae. Microbiology (Reading) 153(Pt 3):877-886 PMID:17322208
Hazelwood LA, et al. (2006) A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res 6(6):937-45 PMID:16911515
Kresnowati MT, et al. (2006) When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2:49 PMID:16969341
Boer VM, et al. (2005) Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures. FEMS Yeast Res 5(10):885-97 PMID:15949974
Tai SL, et al. (2005) Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. J Biol Chem 280(1):437-47 PMID:15496405
Vuralhan Z, et al. (2005) Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 71(6):3276-84 PMID:15933030
Daran-Lapujade P, et al. (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279(10):9125-38 PMID:14630934
Daran-Lapujade P, et al. (2003) Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Res 4(3):259-69 PMID:14654430
Daran JM, et al. (1997) Physiological and morphological effects of genetic alterations leading to a reduced synthesis of UDP-glucose in Saccharomyces cerevisiae. FEMS Microbiol Lett 153(1):89-96 PMID:9252577
Daran JM, et al. (1995) Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. Eur J Biochem 233(2):520-30 PMID:7588797