Reference: Daran-Lapujade P, et al. (2009) Chemostat-based micro-array analysis in baker's yeast. Adv Microb Physiol 54:257-311

Reference Help

Abstract


Chemostat cultivation of micro-organisms offers unique opportunities for experimental manipulation of individual environmental parameters at a fixed, controllable specific growth rate. Chemostat cultivation was originally developed as a tool to study quantitative aspects of microbial growth and metabolism. Renewed interest in this cultivation method is stimulated by the availability of high-information-density techniques for systemic analysis of microbial cultures, which require high reproducibility and careful experimental design. Genome-wide analysis of transcript levels with DNA micro-arrays is currently the most commonly applied of these high-information-density analysis tools for microbial gene expression. Based on published studies on the yeast Saccharomyces cerevisiae, a critical overview is presented of the possibilities and pitfalls associated with the combination of chemostat cultivation and transcriptome analysis with DNA micro-arrays. After a brief introduction to chemostat cultivation and micro-array analysis, key aspects of experimental design of chemostat-based micro-array experiments are discussed. The main focus of this review is on key biological concepts that can be accessed by chemostat-based micro-array analysis. These include effects of specific growth rate on transcriptional regulation, context-dependency of transcriptional responses, correlations between transcript profiles and contribution of the corresponding proteins to cellular function and fitness, and the analysis and application of evolutionary adaptation during prolonged chemostat cultivation. It is concluded that, notwithstanding the incompatibility of chemostat cultivation with high-throughput analysis, integration of chemostat cultivation with micro-array analysis and other high-information-density analytical approaches (e.g. proteomics and metabolomics techniques) offers unique advantages in terms of reproducibility and experimental design in comparison with standard batch cultivation systems. Therefore, chemostat cultivation and derived methods for controlled cultivation of micro-organisms are anticipated to become increasingly important in microbial physiology and systems biology.

Reference Type
Journal Article | Review
Authors
Daran-Lapujade P, Daran JM, van Maris AJ, de Winde JH, Pronk JT
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference