Reference: Babaei M, et al. (2024) Coupling High-Throughput and Targeted Screening for Identification of Nonobvious Metabolic Engineering Targets. ACS Synth Biol 13(1):168-182

Reference Help

Abstract


Identification of metabolic engineering targets is a fundamental challenge in strain development programs. While high-throughput (HTP) genetic engineering methodologies capable of generating vast diversity are being developed at a rapid rate, a majority of industrially interesting molecules cannot be screened at sufficient throughput to leverage these techniques. We propose a workflow that couples HTP screening of common precursors (e.g., amino acids) that can be screened either directly or by artificial biosensors, with low-throughput targeted validation of the molecule of interest to uncover nonintuitive beneficial metabolic engineering targets and combinations hereof. Using this workflow, we identified several nonobvious novel targets for improving p-coumaric acid (p-CA) and l-DOPA production from two large 4k gRNA libraries each deregulating 1000 metabolic genes in the yeast Saccharomyces cerevisiae. We initially screened yeast cells transformed with gRNA library plasmids for individual regulatory targets improving the production of l-tyrosine-derived betaxanthins, identifying 30 targets that increased intracellular betaxanthin content 3.5-5.7 fold. Hereafter, we screened the targets individually in a high-producing p-CA strain, narrowing down the targets to six that increased the secreted titer by up to 15%. To investigate whether any of the six targets could be additively combined to improve p-CA production further, we created a gRNA multiplexing library and subjected it to our proposed coupled workflow. The combination of regulating PYC1 and NTH2 simultaneously resulted in the highest (threefold) improvement of the betaxanthin content, and an additive trend was also observed in the p-CA strain. Lastly, we tested the initial 30 targets in a l-DOPA producing strain, identifying 10 targets that increased the secreted titer by up to 89%, further validating our screening by proxy workflow. This coupled approach is useful for strain development in the absence of direct HTP screening assays for products of interest.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Babaei M, Thomsen PT, Pastor MC, Jensen MK, Borodina I
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference